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1. Abstract

A preconditioned directional-implicit agglomeration

algorithm is developed for solving two- and three-
dimensional viscous flows on highly anisotropic un-

structured meshes of mixed-element types. The

multigrid smoother consists of a pre-conditioned

point- or line-implicit solver which operates on

lines constructed in the unstructured mesh using a

weighted graph algorithm. Directional coarsening or

agglomeration is achieved using a similar weighted

graph algorithm. A tight coupling of the line con-

struction and directional agglomeration algorithms

enables the use of aggressive coarsening ratios in

the multigrid algorithm, which in turn reduces the

cost of a multigrid cycle. Convergence rates which

are independent of the degree of grid stretching are
demonstrated in both two and three dimensions.

Further improvement of the three-dimensional con-

vergence rates through a GMRES technique is also
demonstrated.

2. Introduction

The goal of this work is the development of an

efficient solver for compressible steady-state high

Reynolds number Navier-Stokes flows on unstruc-
tured meshes. The overall strategy is based on a

multigrid approach. Multigrid methods form the
basis of some of the most efficient available solvers

for such problems, both on structured and unstruc-

tured grids. For inviscid transonic flow problems,

multigrid methods can deliver converged solutions

in under 100 cycles [1]. However, for high-Reynolds

number Navier-Stokes problems, and for flows in-

volving large regions of low velocity fluid, multigrid

convergence rates degrade seriously. This degrada-
tion is due partly to the stiffness induced by the

highly stretched grids which are required to resolve
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efficiently the thin boundary layers and wakes which

occur at high Reynolds numbers. Additional stiff-

ness is induced in regions of low Mach number flow,

due to the disparity in eigenvalues corresponding

to the acoustic and convective wave speeds, as the
Mach number tends to zero.

The construction of an efficient solver requires

simultaneous treatment of these effects. Semi-

coarsening multigrid techniques as wcll as implicit
line-solvers can be used effectively on structured

grids to relieve the stiffness associated with highly

stretched meshes [2, 3]. The basic semi-coarsening
strategy consists of constructing coarser multigrid

levels by coarsening the original grid in the coordi-

nate direction normal to the grid stretching, rather

than in all directions simultaneously. When conflict-

ing stretching directions exist, multiple coarse grids

must be constructed, each generated by a coarsen-

ing in a particular coordinate direction [4]. However,

when a single stretching direction can be identified,

only one family of directionally coarsened grids is

required [5].
Semi-coarsening techniques can be generalized to

unstructured meshes as directional coarsening meth-

ods [6, 7, 8, 9]. Graph algorithms can be constructed
to remove mesh vertices based on the local degree

and direction of anisotropy in either the grid or
the discretized equations. This is achieved by bas-

ing point-removal decisions on the values of the dis-

crete stencil coefficients. This is the basis for alge-

braic multigrid methods [9], which operate on sparse

matrices directly, rather than on geometric meshes.

These techniques are more general than those avail-
able for structured meshes, since they can deal with

multiple regions of anisotropies in conflicting direc-
tions.

One of the drawbacks of semi- or directional-

coarsening techniques is that they result in coarse

grids of higher complexity. While a full-coarsening

approach reduces grid complexity between succes-

sively coarser levels by a factor of 4 in 2D, and 8 in

3D, semi-coarsening techniques only achieve a grid



complexityreductionof2,in both2Dand3D.This
increasesthecostof amultigridV-cycle,andmakes
theuseofW-cyclesimpractical.Perhapsmoreim-
portantlyfor unstructuredmeshcalculations,the
amountofmemoryrequiredto storethecoarselevels
isdramaticallyincreased,particularlyin 3D.

An alternativeto semi-coarseningis to usean k=l
implicit line-solverin the directionnormalto the
gridstretchingcoupledwith a regularfull coarsen-
ing multigridalgorithm. Althoughpredetermined
gridlinesdonotexistinanunstructuredmesh,such
linescanbeconstructedbyidentifyingandgrouping
togetherneighboringmeshedgesusingagraphalgo-
rithm[10,11].Byusingaweightedgraphalgorithm
with edgeweightswhichreflectthedegreeof cou-
plingin thediscretizationbetweenneighboringgrid
points,setsoflineswhichpropagatein thedirection
ofstronggridcouplingcanbeconstructed[12].

The solutionstrategydescribedin this paper
addressesthe anisotropy-inducedstiffnessproblem
througha combinationof implicit linesolverscou-
pledwithdirectionalcoarseningmultigrid.Thiscou-
pledalgorithmpermitsfastercoarseningrateswhich
resultinmoreoptimalcoarsegridcomplexities.The Ilow Mach number stiffness problem is addressed us-

ing preconditioning techniques [13, 14, 15, 16], which

are integrated into the overall directional implicit

multigrid algorithm. The combination of these three

techniques into a single solver has previously been
demonstrated in the context of geometric multigrid

for two-dimensional problems [12]. The current work
represents an extension of this strategy to the more

practical agglomeration or algebraic multigrid ap-

proach for unstructured meshes, as well as the ex-
tension to three dimensions.

3. Discretization

The governing equations are discretized using a
finite-volume approach. Flow variables are stored

at the vertices of the mesh, and control volumes

are formed by the median-dual graph of the origi-

nal mesh, as shown in Figure 1. A control-volume

flux balance is computed by summing fluxes evalu-

ated along the control volume faces, using the av-

erage values of the flow variables on either side of

the face in the flux computation. This construction

of the convective terms corresponds to a central dif-

ference scheme which requires additional dissipation

terms for stability. These may either be constructed

explicitly as a blend of a Laplacian and biharmonic

operator, or may be obtained by writing the resid-

ual of a standard upwind scheme as the sum of a

convective term and dissipation term:

neighbors
1
5(F(wi)

1 IAikI(WL __ WR)
+ F(wk)).nik --

where the convective fluxes are denoted by F(w), nik

represents the normal vector of the control volume

face separating the neighboring vertices i and k, and

Aik is the flux Jacobian evaluated in the direction

normal to this face. WL and wR represent extrap-

olated flow values at the left and right hand sides

of the control volume face respectively. For a first

order-scheme, these are taken as the values at the

vertices to the left and right of the control volume

interface, whereas for a second-order scheme, these

are extrapolated from the corresponding vertex val-
ues using solution gradients pre-computed at these
vertices.

FIG. 1. Median control-volumes for stretched

quadrilateral and triangular elements

In this work, a matrix artificial dissipation is em-

ployed. The matrix-based artificial dissipation

scheme is obtained by utilizing the same transfor-

mation matrix [Aik[ as the upwind scheme, but

using this to multiply a difference of blended first

and second differences (i.e. blended Iaplacian and

biharmonic operator) rather than a difference of
reconstructed states at control-volume boundaries.

The traditional scalar artificial dissipation scheme

[17, 18, 19] is obtained by replacing the four eigen-
values u, u, u+c, u-c in the IAik[ matrix of the ma-

trix dissipation model by the maximum eigenvalue

[u] + c, where u and c denote local fluid velocity and

speed of sound, respectively. This matrix dissipa-
tion construction has been found to deliver accuracy

comparable to an upwind scheme, while eliminating

the need to compute and store flow gradients at mesh
vertices.

(1)



Thethin-layerform of the Navier-Stokesequa-
tionsisemployedin allcases,andtheviscousterms
arediscretizedto second-orderaccuracyby finite-
differenceapproximation.For multigridcalcula-
tions,afirst-orderdiscretizationisemployedforthe
convectivetermsonthecoarsegridlevels.

Thesingleequationturbulencemodelof Spalart
andAllmaras[20]is utilizedto accountfor turbu-
lenceeffects.Thisequationisdiscretizedandsolved
in amannercompletelyanalogousto theflowequa-
tions,with theexceptionthat theconvectiveterms
areonlydiscretizedto first-orderaccuracy.

Thisparticulardiscretizationisdesignedtoenable
theuseofmixedelementmeshesin twodimensions
(quadrilateralsandtriangles)andthree-dimensions
(tetrahedra,prisms,pyramids,hexahedra).Meshes
of differingelementtypesarehandledby employ-
ing a singleedge-baseddatastructureto assemble
thefluxesacrossall elementtypes[21].In twodi-
mensions,quadrilateralelementsareemployedinthe
regionsofhighmeshstretching,whiletriangularele-
mentsareemployedin isotropicregionsofthemesh.
In threedimensions,hexahedraor prismsareem-
ployedin regionsnearthewall,whiletetrahedraare
generallyemployedelsewhere.Theuseof different
elementtypesin regionsofhighmeshstretchingen-
ablesa morecompletedecouplingof thediscretiza-
tionin thestretchingandnormaldirections,asdis-
cussedin section5.

4. Preconditioned Smoothing

Once the governing equations are discretized, they

must be integrated in time to obtain the steady-state

solution. This is achieved using a preconditioned

multi-stage time-stepping scheme. An explicit k-

stage scheme can be written as:

w_ °) _-- w._n)

w(q) = w_°) + At, × 1%(w(q-l))i

W (qTi) = W} 0) ÷ Ati x Ri(w (q))i (2)

where At represents the scalar time step estimate.
While such a scheme is commonly used for scalar ar-

tificial dissipation discretizations, for upwind or ma-

trix dissipation discretizations substantial increases

in efficiency can be obtained by using a Jacobi

preconditioning approach in conjunction with the

multi-stage scheme [22, 23, 24, 25]. The (q + 1)th

stage of a Jacobi preconditioned multi-stage scheme
can be written as:

w (q+l) ----w_ °) ÷ [Di] -1 x l_(w (q)) (3)i

where the scalar time step At from equation (2) is

replaced by the matrix time step given by the inverse
of the matrix

neighbors

OIL(w) 1 ]Aik]) (4)
[D,]- _ ----( Z

k:l

which is a 5 x 5 matrix (4 x 4 in two dimensions)

corresponding to the pointwise Jacobian of the resid-

ual. Note that for a scalar dissipation scheme, this

matrix becomes diagonal, and the scalar time-step

estimate is recovered, thus reducing the scheme to

the standard explicit multi-stage scheme.

Additional preconditioning of the type described

in [13, 14, 15, 16] must be implemented in order
to address the stiffness problems induced by re-

gions of low Mach number flows. Traditionally,

such preconditioners are described as a matrix mul-

tiplying an explicit updating scheme, and a similar
matrix-based modification to the dissipation terms,

which improves the accuracy at low Mach numbers.

Thus, the (q÷ 1)th stage of the standard multi-stage

scheme (c.f. equation (2)) is rewritten as:

w(q+l) -- (0) +PAti ×

neighbors

(  (F(wiq)+ F(wkq))nik
k=l

1p-11pA,kI(WLq--WR q) ) (5)
2

In the present work, we wish to implement

this type of "preconditioner" in the context of

a point-implicit (Jacobi-preconditioned) or line-

implicit scheme. Since the low Mach number pre-

conditioning matrix is a point-wise matrix, its imple-
mentation for point-implicit schemes is similar as for

line-implicit, or any implicit scheme. The approach

taken, which was originally described in [26, 21], is

to modify the dissipation terms in the discretization,

as per equation (5) , and then simply take this mod-

ification into account in the point-wise linearization

that is required for the point-implicit Jacobi scheme.

Thus, the (q + 1)th stage of the low Mach number



preconditionedJacobimulti-stageschemebecomes:

w(q+l) _ (0)
i = w i -F

neighbors - 1
×

neighbors

k=l

]

--2P-I[PAikI(WL a - wR q) ) (6)

In regions where the Maeh number is relatively

large,the low Mach number preconditioningma-

trix P becomes the identitymatrix, and effectof

the preconditionervanishes.In thiscase,the above

scheme revertsto the 3acobi preconditionedscheme

ofequations (3).Likewise,forscalardissipationdis-

cretizations (i.e. when [PAik[ is approximated as

a diagonal matrix), this scheme reverts to the low
Mach number preconditioned schemes characterized

by equation (5) and described in [13, 14, 16]. The

particular form of the preconditioning matrix P em-

ployed is that described in [27]. The implementa-
tion described therein is attractive because it can

be achieved without any change of variables in the

original discrctization.

Equation (6) represents the scheme used in

isotropic regions of the mesh. In regions of large
mesh stretching, this pointwise scheme is replaced

by a line implicit scheme, operating on grid lines

which are pre-constructed in the grid. The im-

plicit system generated by the set of lines can be

viewed as a simplification of the general Jacobian
obtained from a linearization of a backwards Euler

time discretization, where the Jacobian is that ob-

tained from a first-order discretization, assuming a
constant Roe matrix in the linearization. For block-

diagonal preconditioning, all off-diagonal block en-
tries are deleted, while in the line-implicit method,

the block entries corresponding to the edges which

constitute the lines are preserved. The line-implicit
solver is introduced into the current solution strat-

egy as an extension of the Jacobi preconditioner.

At each stage in the multi-stage scheme, the_orr6c-

tions previously obtained by multiplying the resid-

ual vector by the inverted block-diagonal matrix are
replaced by corrections obtained by solving the im-

plicit system of bl0ck-tridiagonal matrices generated

from the set of lincs. This implementation has the

desirable feature that it reduces exactly to the block-

diagonal preconditioned multi-stage scheme when

the line length becomes one (i.e. 1 vertex and zero

edges), as is the case in isotropic regions of the mesh.
In summary, the final scheme, which is used as

a smoother for multigrid on all levels, results in

a point-implicit low-Mach number preconditioned

multi-stage scheme in isotropic regions of the mesh,

and a line-implicit low-Mach number preconditioned

multi-stage scheme in regions of high mesh stretch-

ing. A three-stage multistage scheme with stage

coefficients optimized for high frequency damping

properties [28], and a CFL number of 1.8 is used

in all computations.

5. Directional Agglomeration

and Line Construction

The stiffness due to grid anisotropy is addressed by a

directional agglomeration multigrid strategy coupled

with a line-implicit smoother. The combination of

these two strategies into a single algorithm has been
found to result in a more robust and efficient solution

method than the use of either strategy alone [29, 12].

In regions of high grid stretching, standard direc-

tional agglomeration (i.e. coarsening) results in the

removal of one grid point for every retained coarse

grid point. This produces a sequence of coarse grid

levels for which the complexity between successive

levels decreases by a factor of 2. Isotropic agglom-
eration, on the other hand, produces a coarse grid

complexity reduction of 4:l in 2D and 8:1 in 3D. The

higher complexity of the directionally coarsened lev-

els greatly increases memory overheads, particularly

in three dimensions, and makes the use of the multi-

grid W-cycle impractical, since the operation count

of the W-cycle becomes unbounded in such cases as

the number of grid levels is increased.

The implicit-line solver achieves superior smooth-

ing of error components along the direction of the
implicit lines, as compared to a regular explicit

scheme. This in-turn permits the use of an ac-

celerated coarsening schedule by the agglomeration

multigrid algorithm. However, since the implicit

line-solver is only effective at smoothing error com-

ponents along the implicit lines, multigrid coarsen-

ing must proceed precisely along the direction of
these lines. This requires a close coupling between

the directional agglomeration algorithm and the line

construction algorithm. Both techniques are based

on weighted graph algorithms, and must employ the

same definition of the graph weights.



Agglomerationmultigridmaybeviewedasasim-
plifiedalgebraicmultigridstrategy. Coarselevel
gridsareconstructedbyfusingtogetheroragglomer-
atingneighboringcontrolvolumesto formacoarser
setoflargerbut morecomplexcontrolvolumes.In
thealgebraicinterpretationofagglomerationmulti-
grid,thecoarselevelsarenolongergeometricgrids,
but representgroupingsoffinegridequationswhich
aresummedtogetherto formthecoarsegridequa-
tionssets[6,30].Therefore,it is importantto base
thedirectionalagglomerationandlineconstruction
graphweightsonalgebraicquantitiessuchasstencil
coefficients,ratherthangeometricquantitiessuchas
edgelengths,whichmaybeill-definedonthecoarse
levels.However,a one-to-onecorrespondencebe-
tweenstencilcoefficientsandgrid edgesonlyexists
forscalarequationsandisnotpossibleforsystemsof
equations.Forthisreason,theedgeweightsforthe
line-constructionalgorithmandthedirectionalag-
glomerationalgorithmaretakenasthestencilcoef-
ficientsofascalarconvectionequationdiscretizedon
thefinegridusingthefinite-volumeapproach.On
thefinelevel,thesecorrespondto thearea-weighted
normalsof thecontrolvolumefacesdelimitingtwo
neighboringvertices.Onthecoarserlevels,theseare
constructedby summingtheconstituentfinelevel
facenormals.

For highlystretchedquadrilateralcells,this re-
sults in largeweightsbeingassociatedwith grid
edgesnormalto the directionof stretching,and
smalledgeweightsin the directionparallelto the
stretching,ascanbeinferredfromtherelativesizes
ofthecontrolvolumefacesinFigure1.However,for
stretchedtriangularcells,thediagonalgridedgesre-
sult inweightswhichmaybecomparablein thetwo
directions.Thisweakerdecouplingof thenormal
andstretchingdirectionsfor triangularelementsin
two dimensionscanproduceundesirableresultsin
the lineandagglomerationalgorithms.Therefore,
weemployquadrilateralelementsin twodimensions
in regionsofhighmeshstretching,andprismatic(or
hexahedral)elementsinhighlystretchedregionsfor
threedimensionalmeshes.An alternateapproach
wouldbeto employadifferentcontrolvolumedefi-
nition,suchasacontainment-dualbasedcontrolvol-
ume[31],andretainsimplicialelementsin thesere-
gions,althoughthishasnotbeenattemptedto date.

Theline constructionalgorithmbeginsby pre-
computingtheratioofmaximumto averageadjacent
edgeweightfor eachvertex.Theverticesarethen
sortedaccordingto this ratio. Thefirst vertexin

thisorderedlist is thenpickedasthestartingpoint
fora line.Thelineisbuilt byaddingto theoriginal
vertextheneighboringvertexwhichismoststrongly
connectedto thecurrentvertex,providedthisver-
texdoesnotalreadybelongto aline,andprovided
theratioofmaximumto minimumedgeweightsfor
thecurrentvertexis greaterthana, (using a = 4

in all cases). The line terminates when no addi-
tional vertex can be found. If the originating vertex

is not a boundary point, then the procedure must be

repeated beginning at the original vertex, and pro-

ceeding with the second strongest connection to this

point. When the entire line is completed, a new line

is initiated by proceeding to the next available vertex

in the ordered list. Ordering of the initial vertex list

in this manner ensures that lines originate in regions

of maximum anisotropy, and terminate in isotropic

regions of the mesh. The algorithm results in a

set of lines of variable length. In isotropic regions,

lines containing only one point are obtained, and

the point-implicit or Jacobi pre-conditioned scheme
is recovered.

The agglomeration algorithm consists of choosing

a seed point (i.e. a control-volume) which initiates
a local agglomeration, and then agglomerating the

neighboring control volumes to the seed point. The

isotropic version of this algorithm [32, 33, 18] consti-

tutes an unweighted graph algorithm. In this version

of the algorithm, each time a seed point is chosen, all

neighboring points are agglomerated to this point.

The directional agglomeration algorithm is based on
a weighted graph technique. The edge weights are
defined in the same manner as for the line construc-

tion algorithm. Once a seed point is chosen, only

those neighboring points that are connected to the

seed point through an edge of weight greater than

/3 × maxweight are agglomerated, where maxweigh_
denotes the maximum edge weight incident to the

seed point. Taking j3 -- 0.5 reproduces the isotropic

agglomeration algorithm in regions were all edge

weights are close in size. Howcver, in regions where

one edge weight is much larger than the others, a

directional coarsening is achieved. This results in

a 2:1 coarsening ratio in such regions. In order to

obtain a 4:1 coarsening ratio, the process must be
repeated. This will result in the agglomeration of

points or control volumes which were not originally

neighbors of the initial seed point. This type of ag-

gressive coarsening can only be tolerated in regions

where the implicit line solver is used as a smoother.

Therefore, the coarsening process is repeated only

if the agglomerated control volume is joined to the



currentseedpointby anedgewhichis part of an
implicitline.Theprocessisrepeateduntil fourcon-
trol volumesareagglomeratedtogether,or until no
lineedgescanbefound.

Fromtheabovedescription,it isevidentthat the
lineconstructionandcoarseningprocessareclosely
coupledand mustbe carriedout simultaneously.
Theedgeweights,oncedefinedon thefinestlevel,
arecomputedon thefly for eachcoarserlevelas
theyarecreated.Thewholeprocessisperformedin
apreprocessingphase,andtheoutput,consistingof
setsoflinesforeachlevelandcoarsegridgroupings,
ispassedto theflowsolver.

FIG.3. Directional Implicit Lines Constructed on

i,' ._ .... _w_:-,_:-- .-_.,_ ........ _.-_i_-4 1 Grid of Figure 2 by Weighted Graph Algorithm

F.,>.>_" -+;_,_1

FIG. 2. Unstructured Grid Used for Computation of

Transonic Flow Over RAE _822 Airfoil. Number of
Points = 16167, Wall Resolution = 10 -6 chords

As an example, the directional implicit agglomer-

ation multigrid algorithm has been applied to the

grid of Figure 2. The lines created on the finest

grid level are depicted in Figure 3. The first coarse

agglomerated level is illustrated in Figure 4, depict-

ing the agglomerated cells in the boundary-layer re-

gion near the leading edge, where a 4:1 directional
coarsening is observed. Table 1 documents the com-

plexity of the coarse grid levels using the isotropic

agglomeration algorithm of [18], as well as the coarse
grid complexity achieved using the current direc-

tional agglomeration multigrid algorithm. The re-

sulting complexity for a multigrid W-cycle is just

15 % larger for the directionally agglomerated grids

than for the isotropically agglomerated grids.

FIG. 4. First Agglomerated Multigrid Level Con-

structed on Grid of Figure 2 Illustrating _:1 Direc-

tional Coarsening in Boundary Layer Region



Mesh Level

W-Cycle

Complexity

Regular AMG

Nnode

16167

4074

1038

268

1.89

Directional AMG

Ratio Nnode

1 16167

3.99 4476

3.92 1383

3.87 585

Ratio

1

3.61

3.24

2.36

2.18

Table 1: Comparison of Coarse Grid Complexity and

Resulting W-cycle Complexity for Regular Isotropic

Agglomeration and Directional Agglomeration Multi-

grid
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FIG. 5. Computed Mach Contours on Grid of Figure

2. Mach= 0.73, Incidence = 2.31 degrees, Re = 6.5
million

6. Two Dimensional Results

The combined directional-implicit agglomeration

multigrid algorithm produces convergence rates in-
dependent of the degree of grid anisotropy. This is

demonstrated in two dimensions by solving the tran-
sonic flow over an RAE 2822 airfoil on three different

All three grids contain the same distribution _.grids.

of boundary points, but different resolutions in the
direction normal to the boundary and wake regions. _

The first grid contains a normal wall spacing of 10 -5

chords, and a total of 12,568 points, while the second

grid contains a normal wall spacing of 10 -6 chords,

and 16,167 points, and the third grid a normal wall

spacing of 10 -7 chords, and 19,784 points. The cells

in the boundary layer and wake regions are gener-

ated using a geometric progression of 1.2 for all three

grids. The second grid, depicted in Figure 2, con-
tains what is generally regarded as suitable normal FIG. 6.

and streamwise resolution for accurate computation

of this type of problem, while the first and third grids

are most likely under-resolved and over-resolved in

the direction normal to the boundary layer, respec-

tively.
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_1.. EXPLICIT FULL COARSENING MG

"__ _ ::'"--: ........................................

I ' . _ ] "-it,

100 20_ 300 400 _0 6(]0

Number of MG Cycles

Comparison of Explicit Isotropic and

Directional-Implicit Agglomeration Multigrid Algo-

rithm Convergence Rates on 3 Grids of Varying Nor-
mal Resolution
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FIG. 7. Comparison of Low-Mach Number Precon-

ditioned and Unpreeonditioned Directional-Implicit

Agglomeration Multigrid Algorithm Convergence

Rates for Various .freestream Mach Numbers

The Mach number for this case is 0.73, the incidence

is 2.31 degrees, and the Reynolds number is 6.5 mil-

lion. The computed solution on the grid with nor-
mal wall spacing of 10 -6 chords is depicted in Figure
5. The flow is transonic and the low Mach number

preconditioning matrix reverts to the identity ma-
trix for this case. With the effect of this precondi-

tioning removed, a more direct comparison between

the directional implicit multigrid and the previously

developed unpreconditioned full coarsening multi-

grid method [18, 19] is possible. The convergence
rates of both methods on all three grids are shown

in Figure 6. The explicit full coarsening multigrid

solver produces convcrgcnce rates which decay sub-

stantially as the grid stretching is increased. In

fact, the asymptotic rate of this scheme for the most

highly stretched grid is almost two orders of magni-
tude slower than that achieved on the least stretched

grid. On the other hand, the directional-implicit
agglomeration scheme produces convergence to ma-

chine zero in under 600 cycles and is essentially un-

affected by the degree of grid anisotropy. This com-

parison represents the best possible performance for

each scheme. The explicit full-coarsening multigrid

algorithm employs a five stage time-stepping scheme

which is augmented with implicit residual smooth-

ing and is used to solve a scalar dissipation dis-

cretization. The use of more accurate matrix dissi-

pation with the explicit full-coarsening multigrid al-

gorithm produces slower and less robust convergence

rates. The directional implicit agglomeration algo-

rithm operates on the matrix dissipation discretiza-

tion and uses a three stage time-stepping scheme
with no residual smoothing but with point- or line-

preconditioning where the jacobians are evaluated

and inverted only at the first stage of the scheme and

then frozen for the remaining stages. Although Fig-

ure 6 compares the two schemes in terms of multigrid

cycles, the cost per cycle of both schemes is relatively

close, the directional implicit agglomeration scheme

being about 15% more expensive per cycle, which is

mainly due to the added work for the evaluation of

the matrix dissipation.

The benefits of low Mach-number preconditioning

are demonstrated in Figure 7, where the flow over

an RAE 2822 airfoil at varying Mach numbers has

been computed on the grid of Figure 2 using the di-

rectional implicit agglomeration algorithm with and
without the low Mach number preconditioner. For

the transonic case, the preconditioner is not active,

and both cases give identical convergence. However,

as the Mach number is lowered, the convergence rate

degrades substantially for the cases run with no pre-

conditioning, while the preconditioned cases all con-

verge to machine zero in approximately 300 cycles.

This example demonstrates the importance of em-

ploying both techniques simultaneously (low-Mach

number preconditioning and directional implicit ag-
glomeration) in order to obtain rapid convergence
rates for subsonic Navier-Stokes flows.

The computation of high-lift flows simultaneously

involves regions of low velocity fluid and high grid

anisotropy, therefore providing a good demonstra-

tion of the current algorithm. Figure 8 depicts an

unstructured grid about a three-element airfoil high-

lift configuration. The grid contains a total of 61,104
points and a normal spacing of 10 -6 chords at the

surface of each airfoil element. The implicit lines

generated by the graph algorithm for this case are
depicted in Figure 9, and a qualitative view of the

solution as a set of Mach contours is given in Fig-
ure 10. The freestream Mach number for this case

is 0.2, the incidence is 16 degrees, and the Reynolds

number is 9 million. The convergence rates of the

directional-implicit agglomeration scheme and the

explicit full-coarsening agglomeration scheme are

compared on the basis of CPU time in Figure 11.

The explicit full-coarsening scheme employs a five
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stage time-stepping scheme and residual smoothing
and solves the scalar dissipation discretization, while

the directional-implicit agglomeration scheme em-

ploys the preconditioned three-stage time-stepping
scheme with Jacobians frozen at the second and

third stages, and solves the matrix dissipation dis-

cretization. As can be inferred from Figure 11, the

directional-implicit agglomeration scheme achieves a

6 order of magnitude residual reduction in approxi-

mately one quarter of the time required by the ex-

plicit full-coarsening approach, which permits engi-

neering solutions to be obtained in approximately

1.5 hours on an inexpensive workstation.

FIG. 8. Unstructured Grid Used for Computation of

Subsonic Flow Over Three-Element Airfoil Geome-

try. Number of Points = 61,10,_, Wall Resolution =
10 -6 chords

FIG. 9. Implicit Lines Generated by Weighted Graph

Algorithm on Grid of Figure 8
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FIG. 10. Computed Mach Contours for Flow over

Three-Element Air]oil. Mach = 0.2, Incidence -_ 16

degrees, Reynolds number = 9 million
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FIC. 11. Comparison of Convergence Rates ob-

tained for Flow Over Three-Element Airfoil in terns

of CPU time on Workstation

7. Three Dimensional Results

In three dimensions, a directional coarsening ratio

of 8:1 is required in order to match the coarse grid

complexities achieved by an isotropic full coarsen-

ing algorithm. Unfortunately, robustness problems

associated with 8:1 coarsening ratios have been en-
countered. Therefore, at present a 4:1 coarsening ra-

tio is employed in three-dimensions, although faster

coarsening ratios are still under investigation. This



resultsina50%increaseinstorageandcputimeper
multigridW-cycleascomparedto that achievedby
an8:1coarseningalgorithm,butneverthelessresults
ananefficientsolutionprocedurefor threedimen-
sionalproblems.

FIG. 12. Illustration of Mixed Element Grid

and Implicit Lines Used for Computation of two-
dimensional Flow over three-dimensional Wing Ge-

ometry. Number of Grid Points: 177,837

__ 2D EXPLICIT FULL COARSI_ING AMG

....... 2D DIRECT/ONAL IMPLICIT AMG

,:., _ _ _ 3D DIRECTIONAL IMPLICIT AMG

•.. • •

........................ "_%._

I | I i I

100 200 300 ad)0 500 6_

Number of MG Cycles

FIG. 13. Comparison of Convergence Rate obtained

by Three-Dimensional Directional-Implicit Multigrid
Algorithm with Rate Obtained on Equivalent Two-
Dimensional Problem

The first three-dimensional test case involves the

computation of a two-dimensional flow using a three-
dimensional grid, in order to compare the perfor-
mance of the three-dimensional code with that of

the two-dimensional code. The grid of Figure 2 has

been extruded in the spanwise direction, resulting in

a three dimensional grid of 177,837 vertices. While

the original two dimensional grid contained quadri-

lateral elements in the boundary and wake regions

and triangular elements elsewhere, the three dimen-

sional grid contains hexahedral elements in the vis-

cous regions, and prismatic elements in the invis-

cid regions. The surface grid and thc implicit lines

generated by the three-dimensional graph algorithm

are depicted in Figure 12. The prescribed coarsen-

ing ratio of 4:1 results in coarse levels which are very
similar to those produced by the two-dimensional al-

gorithm, at least near the wing surface. The conver-
gence rates of the two- and three-dimensional codes

are compared in Figure 13. The Mach number is

0.1, the incidence 2.31 degrees, and the Reynolds
number is 6.5 million. The three-dimensional con-

vergence curve is much faster than the convergence

of the isotropic algorithm, reaching machine zero in

just under 600 multigrid cycles. However, it is some-
what slower than the equivalent two-dimensional al-

gorithm which reaches machine zero in just 300 it-
erations.

The next example demonstrates the insensitiv-

ity of the current three-dimensional algorithm to

grid stretching. Three unstructured tctrahedral

grids have been constructed about an ONERA M6

wing using the VGRID grid generation package [34].

These grids all contain the same surface resolution,
but different normal resolutions near the wing sur-

face. The first grid contains a normal wall spacing

of 10 -5 chords, and a total of 1.2 million points,

while the second grid contains a normal wall spac-

ing of 10 -6 chords, and 1.6 million points, and the

third grid a normal wall spacing of 10 -7 chords,

and 2 million points. The cells in the boundary

layer and wake regions are generated using a geo-
metric progression of 1.2 for all three grids. The

second grid (i.e. 10 -6 spacing) is depicted in Fig-
ure 14. As explained previously, prismatic elements

are required in the boundary layer regions for the

directional-implicit agglomeration algorithm. Since

the VGRID grid generation package produces fully

tetrahedral meshes, a mesh merging technique is em-

ployed to merge tetrahedra triplets into prisms in

regions near the wall [21]. At this initial stage of

development, a uniform height of prism layers is era-
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ployed over the entire wing surface. This avoids the

use of "hanging edges" or transitional elements such
as pyramids when a variable number of prismatic

layers are allowed in the grid. On the other hand,

this restriction may result in the incomplete merging
of some stretched tetrahedral elements. The conver-

gence rates of the directional-implicit agglomeration

algorithm on all three grids are depicted in Figure

15. A four level W-cycle was used for these compu-

tations. The coarsening ratios achieved between the
first and second, second and third, third and fourth

levels were 3.69:1, 3.16:1 and 2.2:1 respectively for

the 10 -8 spacing grid, with similar coarsening ratios

obtained on the other grids. The Mach number is

0.1, the incidence is 2.0 degrees and the Reynolds
number is 3 million.

Very similar convergence rates are achieved on all

three grids. All cases exhibit a slowdown in conver-

gence after approximately 6 or 7 orders of magni-

tude, but achieve close to an 8 order of magnitude

reduction in 600 cycles. Considering that these three

grids represent a two order of magnitude variation in

the degree of grid stretching, the convergence rates
can be qualified as independent of the grid stretch-

ing. As an example of the computational overheads

incurred, the grid containing 1.6 million vertices re-

quired a total of 350 Mwords of memory and 53 cpu

hours to converge 600 cycles. This case was run on 8

CPUS of the CRAY C90 and achieved a cpu to wall-

clock time ratio of 7 on a lightly loaded machine.

FIC. 14. Illustration of One of Three Unstructured

Grids Employed For Computation of Flow Over ON-

ERA M6 Wing: Number of vertices--- 1.6 million,
Wail Spacing = 10-6
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FIG. 15. Comparison of Convergence Rates
Achieved by Directional Implicit Agglomeration

Multigrid Algorithm on 3 Grids of Varying Normal

Resolution for ONERA M6 Wing Geometry at Mach
number = O.1

The final case consists of a three-dimensional high-

lift application. The geometry involves a partial

span flap unswept wing in a wind-tunnel. The un-

structured grid employed for this case is depicted in

Figure 16. This mesh contains a total of 549,176
points, and a normal spacing at the wing surface

of 10 -5 chords. As in the previous case, a uniform

height of prismatic layers was created in the bound-

ary layer regions using the mesh merging algorithm

of [21]. The Mach number for this case is 0.2, the

incidence is 10 degrees, and the Reynolds number is

3.7 million. The computed density contours for this

case are depicted in Figure 17. A four level W-cycle
was used for this computation. The coarsening ra-

tios achieved between the first and second, second

and third, third and fourth levels were 3.84:1, 3.43:1

and 2.23:1 respectively. The convergence obtained

by the directional implicit agglomeration multigrid

algorithm is compared with that achieved by the

explicit full-coarsening agglomeration multigrid al-

gorithm in Figure 18. As in the two-dimensional

comparisons, this represents the best possible per-
formance for each algorithm: the directional algo-

rithm employs a three-stage time-stepping scheme

and operates on the matrix dissipation discretiza-

tion, while the isotropic algorithm employs a five-

stage scheme with residual smoothing and operates

11



onthescalardissipationdiscretization.Thedirec-
tionalalgorithmproducessubstantiallyfastercon-
vergencethan the isotropicalgorithm,althougha
slowdownis observedafter4 to 5 ordersof magni-
tude.Whiletheasymptoticrateof the directional
algorithmis still substantiallyfasterthan that of
theisotropicalgorithm,therateismuchslowerthan
that achievedin twodimensions.

FIG.16. Illustration of Unstructured Grid employed

for Computation of Flow Over Partial-Span Flap

Geometry. Number of Vertices = 549,176

FIG. 17. Illustration of Computed Density Contours

for Flow Over Partial-Span Flap Geometry. Maeh
Number = 0.2, Incidence = 10 degrees, Reynolds
Number -- 3.2 million

Further increases in the convergence rate can be

achieved by resorting to a Krylov acceleration tech-

nique such as GMRES [35]. The preconditioned di-
rectional implicit agglomeration algorithm can be

employed as a preconditioner to GMRES [24, 12].

The current implementation uses a nonlinear GM-

RES solver [36] which computes Jacobian-vector

products by finite differencing the residual. The ad-

dition of GMRES incurs little extra cpu time, mea-

sured on a multigrid cycle basis, but requires con-

siderable additional storage, since a solution vector
must be stored for each of the Krylov search di-

rections. In the current implementation, 20 search

directions are employed, resulting in a memory in-

crease of 100 words per vertex (about 50% increase).

The convergence rate using GMRES is depicted in

Figure 18. The solver was run initially 150 multigrid

cycles using the directional agglomeration multigrid

algorithm alone, and then another 462 multigrid cy-

cles using the preconditioned GMRES approach (i.e.

22 GMRES(20) cycles). The addition of GMRES is

largely successful in overcoming the slowdown in the

asymptotic convergence rate observed by the sim-

pler directional implicit multigrid algorithm alone,
achieving an overall residual reduction of 9 orders

of magnitude over 600 cycles. This case required a

total of 230 Mwords of memory and 20 cpu hours on

the CRAY C90, and ran at a cpu-time to wall-clock

ratio of 7 on 8 processors.

FIG. 18.

__ KXPL/crr FUI.L COARSENING AMG

_ _ _ DIRECTIONAL IMPUCTr AMG

.......DIRECTIONAL IMPLICIT AMG. GMRSS

""--, .
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100 2ol) 31)o 4oo _)(} 6oo

Number ofCycles

Comparison of Convergence Rates

Achieved by Various Multigrid Schemes for Flow

Over Partial Span Flap Geometry
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8. Future Work

The preconditioned directional agglomeration multi-

grid algorithm has been shown to produce grid-

aspect-ratio independent convergence rates in both

two and three dimensions. In particular, the two-

dimensional implementation of the current algo-

rithm has resulted in a very efficient solver for vis-

cous flows. However the convergence rates obtained

in three dimensions, while substantially faster than

those achieved by the isotropic algorithm, are still

slower than those observed in two dimensions. This

may be due in part to the possibility of the exis-

tence of multidimensional stretching in three dimen-

sions. In such cases, a modified line-construction

and coarsening strategy may be required. Further-

more, the coarsening ratios achieved in three di-

mensions, which are often even lower that the pre-

scribed 4:1 rate, result in additional cpu time per

multigrid cycle and increase the overall memory re-

quirements of the solver. Future work will focus on

augmenting the three-dimensional coarsening ratios

to approximate the 8:1 ratio observed in isotropic

cases as closely as possible, and on accelerating

the three-dimensional convergence rates through im-

proved line construction and preconditioning. In or-

der to isolate the effects of the turbulence model,

the turbulence values have been frozen after 150 to

200 cyles in the in the computations of the preceding

section. The efficient convergence of the combined

system of flow and turbulence equations is also un-

der investigation.
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